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Summary. As a model for the resting axon membrane, we propose the ionic psn- 
junction. Its electrical characteristics can be determined in close analogy to the corre- 
sponding electronic semiconductor junction. Using the "semianalytic approximation", 
we calculated the electrical capacity and the ionic currents. In contrast to the abrupt 
pn-junction, the electrical capacity of the psn-junction turns out to be practically voltage- 
independent, as it is observed for the squid axon membrane. The passive ionic fluxes 
for K +, Na + and CI-, as the main contributions to the total charge flux, are calculated 
and compared with literature data on the ion fluxes through the resting squid axon 
membrane as measured by use of radioactive tracers. From this comparison, the ionic 
perrneabilities can be evaluated and used to compute the resting membrane conductivity, 
which is found to be close to the experimental value. Further evidence in favor of the 
proposed asymmetrical membrane structure and possible ways of its test by the methods 
of protein chemistry are discussed. 

An interesting class of theoretical models for biological membranes was 

proposed by Mauro (1962) and Coster (1965). These authors considered the 

ionic pn-junction as a basic structure of biological membranes and derived 

its electrical characteristics in close analogy to those of the electronic 

pn-junction of semiconductor physics. 

Mauro (1962) was able to show that the ionic pn-jnnction exhibits 

an electrical capacitance of the order of magnitude found for the membranes 

of numerous different types of cells. Coster (1965), using certain approxi- 

mations, was able to calculate the nonlinear steady state conductivity of the 
ionic pn-junction, which for reasonable choices of parameters compared 
well with that of giant marine algae. Subsequently, in an important paper, 

Coster, George and Simons (1969), by numerical integration of the Nernst- 

* Part of this work was carried out at the Institut ftir Physiologische Chemie, 
Universit/it Miinchen, during the tenure of a Habilitandenstipendium of the Deutsche 
Forschungsgemeinschaft. 
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Planck equations of the pn-junction, verified the validity of the approx: 
mations made by Coster (1965). 

As a modification of the model of Mauro and Coster, we have propose 
the ionic psn-junction as a model for the squid axon membrane (Adair 
1967, 1968, 1970). In the present paper, we give in some detail calculation 
of steady state electrical characteristics of the psn-junction which diffe 
qualitatively from those of the pn-junction. The theoretical results ar 
compared with experimental data taken from the literature on electrica 
capacity, ionic fluxes and electrical conductivity of the squid axon membran, 
in the resting state. 

Fixed-Charge Model of the Membrane 

Our proposed model of the axon membrane (Adam, 1967, 1968, 1970 
augments the pn-junction of Mauro (1962) and Coster (1965) by a centra 
s-layer. This structure is analogous to the electronic psn-junction in elec 
tronic semiconductor devices (Herlet & Spenke, 1965). 

We were led to this modification by the numerous results from electron. 
microscopic and X-ray investigations of biological membranes, which sho~ 
a three-layered structure. High-resolution electron micrographs for thc 
squid giant axolemma were published recently (Villegas & Villegas, 19681 
and exhibit the familar three-layered structure. An extensive review on the 
structural, chemical and electrical data of biological membranes was giver 
by Stoeckenius and Engelman (1969). These data seem to be in accord with 
the membrane model of Davson and Danielli (1952). According to Davson 
and Danielli, biological membranes consist of two protein layers, facing 
the electrolyte reservoirs on both sides of the membrane and sandwiching 
a phospholipid bilayer. 

Correspondingly, we consider the axolemma as a three-layered structure 
(see Fig. 1). 

The n-layer, facing the extracellular compartment, is considered to have 
an excess of fixed positively charged groups. Thus, the mobile majority 
charge carriers are anions. The effective dielectric constant of the n-layer 
is e,. Conversely, the p-layer faces the intracellular compartment and has 
an excess of fixed negatively charged groups in a milieu of an effective 
dielectric constant %. The central s-layer of dielectric constant es has only 
few fixed charges, which in first approximation can be neglected in com- 
parison to those of the n- and p-layers. To account for transport of water- 
soluble metabolites and ions through the membrane, either pores of mole- 
cular dimensions or mobile carriers have been postulated. For the purposes 
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Fig. 1. Schematic representation of the membrane model (above) and of the profile 
of the electric potential (below) 

of the present paper, we need not specify which of the two possibilites of 
transit of solutes through the s-layer occurs in our model, but only that 
one does exist. 

Since we are interested solely in the general properties of the psn- 
junction, we consider only the symmetrical case where the excess con- 
centration N§ of positively charged fixed groups in the n-layer is equal 
to the excess concentration N_ of negatively charged fixed groups in the 
p-layer: 

N+ =N_ = N  (1) 

and furthermore: 
~ .=~=~.  (2) 

Although our model is fairly general, for a more vivid physical ficture 
it seems useful to give some numerical estimates of its parameters. If we 
interpret our model in terms of the Davson-Danielli model, the n- and 
p-layers are composed of membrane-bound hydrophilic proteins and of the 
hydrophilic groups of the phospholipids. The s-layer can be thought of as 
composed of the hydrophobic hydrocarbon chains of the phospholipids 

2 1 "  
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and of the mobile carrier molecules or the pores having a hydrophili~ 
interior. 

Thus, we expect the effective dielectric constant of the p- and n-laye~ 
to be of the order of magnitude encountered in ion-exchange resins, wher( 
there is a volume fraction, of say 0.5, of organic phase distributed in 
watery phase. According to the estimates of Rice and Nagasawa (1961 
p. 470), we thus expect ~ = 30 to 40 %, where eo = 8.86.10 - 14 coul V-  1 cm-  
By a similar argument, the effective dielectric constant of the s-layer wit~ 
predominantly hydrocarbon chains of phospholipids is estimated to be 
about ~s=4 Co. Not much is known about the number of fixed charged 
groups on either side of a biological membrane. An estimate can be derived 
from the membrane-bound mitochondrial protein cytochrome c. It carries 
an excess of eight positively charged groups (Margoliash, 1962) in a volume 
of 25 x25 x37 A a (Dickerson, Kopka, Weinzierl, Varnum, Eisenberg & 
Margoliash, 1967), giving a mean concentration of N§ =0.6 M. Another 
estimate comes from the basic polypeptide protamine, which by Mueller 
and Rudin (1967, 1968a, b) was adsorbed to lipid bilayer membranes and 
gave rise to action potentials. Protamines are of molecular weight 1,000 to 
5,000. They contain predominantly arginine; for instance, clupein has 
22 molecules of arginine and only 11 molecules of other amino acids, 
giving an excess of at least 11 positively charged groups per molecule 
(Karlson, 1966, p. 34). Using a protein density of p=1.25 g/cm a and a 
molecular weight of 5,000, we obtain for clupein N§ >2.6 M. 

Thus, we can expect net concentrations of N+ = 1 to 5 M of fixed charged 
groups in densely packed n-layers of such proteins. Similar values are 
reasonable for the p-layer of our model. A distribution of fixed charges 
as proposed in our psn-model gives rise to a distribution of the electrical 
potential as shown schematically in Fig. 1. A more detailed discussion of the 
potential distribution will be given in later sections. At this place we give 
only some numbers of the magnitudes to be expected. For the squid giant 
axon in the physiological state, the concentration of univalent 1:1 elec- 
trolyte in the extra- and intracellular compartment is about 0.5 M. For a 
fixed-charge lattice of N§ =1, 2, and 5 M, the Donnan potential between 
the extracellular medium and the interior of the n-layer is 21, 36, and 58 mV, 
respectively. Here, a partition coefficient of one was used. The total drop 
of electrical potential across the s-layer is the sum of the two Donnan 
potentials and the resting potential. With a resting potential of about 
- 60 mV, as encountered for the squid giant axon of different species, we get 

for a membrane with N§ =N_ =2 M a potential drop across the s-layer 
of 132 mV in the resting state. Finally, we wish to assign tentative numbers 
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to the thicknesses of the n-, p-, and s-layers. The s-layer is supposed to be 
about 40 A thick, corresponding to twice the length of an extended hydro- 
carbon chain of a phospholipid molecule. The n- and p-layers will be about 
30 A thick, which then gives for their average distance about 70 A, as 
observed electron microscopically for most biological membranes. 

Semianalytic Approximation 

For a straightforward integration of the Nernst-Planck equation of the 
ionic psn-junction, one has to use numerical procedures. As shown by 
Coster et al. (1969) for the pn-junction, such a computer solution proves 
to be very time-consuming and costly. Thus, we shall use in the following 
calculations the semianalytic procedure introduced by Coster (1965). The 
assumptions of this procedure in terms of our model are the following 
(see also Coster et al., 1969): 

(1) In moving from the solution phase into the p- or n-layer, the profiles 
of electric potential and ion concentrations reach steady levels at distances 
which are small compared to the width of the p- and n-layers. 

Estimates on the validity of this assumption have been made by Mauro 
(1962). In the absence of more detailed information, one uses for estimates 
of this kind the presumptions of a partition coefficient between electrolyte 
solution and a fixed-charge lattice of one and of an activity coefficient of one. 
The further approximation N+ >> c, of Mauro (1962), where c is the electro- 
lyte concentration in the solution phase, is not applicable to our system. 
In our case, we have N+ ~ 1 to 5 M and c ~0.5 M. Therefore, we have checked 
the above assumption (1) by numerical integration of Eq. (18) of Mauro's 
paper (1962). The result is shown in Fig. 2, where we have plotted the 
normalized rise of the electrical potential ~ in dependence of the distance 
from the fixed-charge lattice-solution boundary. Here ~o is the electrical 
potential at this boundary and q/~ the steady level of electrical potential 
far in the fixed-charge lattice. As can be seen from this diagram, the above 
assumption (1) is valid; the electrical potential rises to its steady level 
within a few Angstrom. Mauro (1962) has shown that not all of the Donnan- 
potential step occurs within the fixed-charge lattice. For completeness, 
we have assembled in Table 1 the Donnan potential fib, the potential rise 
(ff ~ - ~0) within the fixed-charge lattice, and the distance d in A, in which 
the potential rise in the fixed-charge lattice is completed up to 1/e. The 
numbers in Table 1 correspond to the parameters N+/2c used in Fig. 1. 
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Fig. 2. Normalized profile of the electric potential inside of the n-layer, as described 
in the text. Abscissa: distance in Angstrom from the boundary between solution phas~ 

and n-layer. Parameters on the curves give N+/2c 

Table 1. Donnan-potential ~t D, potential drop (~/o~ -- ~o) within the n-layer, and distance 
of potential rise within the n-layer to less than l/e from the asymptotic value for differem 
ratios N+/2c of the concentration of f ixed charges in the n-layer to concentration c in th~ 

electrolyte reservoir 

N+/2c 1 2 5 10 

~o [mV] 22.3 36.5 58.4 75.7 

~ -- ~t o [mV] 10.5 15.6 20.7 22.9 

diAl 3.8 3.0 2.0 1.5 

Here again, activity coefficient and partition coefficient of one and the 
presence of only one 1:1 univalent electrolyte, such as KC1, were used. 

Our psn-model exhibits a transition region which is almost completely 
depleted of mobile ions. It consists of the s-layer and of small parts of the 
p- and n-layers adjacent to the s-layer. In these small depletion regions 
of the p- and n-layers, the space-charge density is high. Thus, a large junction 
potential exists across the s-layer, which will be characterized quantitatively 
in the following section. In the p- and n-layers outside the depletion regions, 
there are much higher total concentrations of mobile ions as compared 
to those in all other regions of the membrane. Thus, any applied bias 
voltage will appear almost completely across the small depletion regions of 
the p- and n-layers and the s-layer, whereas the regions of the p- and n- 
layers outside the depletion layers are regions of low field strength. Con- 
sequently, there the current densities can be obtained from the Nernst- 
Planck equations by neglecting the term in the field strength. In order 
to obtain the concentration gradients across the p- and n-layers, the following 
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two assumptions are made by the semianalytic approximation of Coster 
(1965). 

(2) Even if a current flows, the ratio of the concentration of ions in the 
n-layer at the boundary to its depletion region to that in the p-layer at the 
boundary to its depletion region is still given by the Boltzmann distribution, 
using the total potential drop across the depletion layers in the n- and p- 
layers and the s-layer. 

(3) After changing by an applied bias the equilibrium potential of a 
certain ion species across the central depletion region of the psn-junction 
as discussed above, only the concentration of the minority carriers rather 
than the majority carriers changes according to the Boltzmann distribution. 
This can be justified by the argument that it minimizes the space-charge 
density of the system. 

(4) The space-charge regions of the depletion layers in the n- and p- 
layers are approximated as sharp rectangular distributions of uncompensated 
fixed charges. 

These assumptions (1)-(4) of the semianalytic approximation have been 
checked by numerical integration of the Nernst-Planck equations for the 
abrupt pn-junction (Coster et al., 1969). There it was shown that the ionic 
current and the electrical capacity can be calculated to an excellent approxi- 
mation by the semianalytic method if the total width of the pn-junction 
is not too small. If the width of the two fixed-charge regions is chosen 
smaller than 2 • 35 A, there are certain deviations, especially with respect 
to assumptions (2) and (3). The reason for the deviations is that the width 
of the depletion layers becomes comparable to the total width of the pn- 
junction. Nevertheless, the current-voltage relation for membrane po- 
tentials > - 3 5 0  V is predicted correctly by the semianalytic procedure, 
even down to a junction width of 2 • 25 A. In the case of the psn-junction, 
the above difficulty does not occur. As will be shown later, the effect of the 
s-layer is such that the depletion layers of the n- and p-layers are always 
completely negligible in width compared to the p- and n-layers. Thus, the 
semianalytic approximations seems to apply even better for the psn-junction 
than for the abrupt pn-junction. 

A quantitative estimate, as to the conditions to be required, if assump- 
tion (2) is to hold, will be given in a later section. This estimate, too, con- 
firms the applicability of assumption (2) of the semianalytic approximation. 
Thus, we can confidently expect this procedure to apply for the derivation 
of the steady state electrical properties of the psn-junction. 
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Electrical Capacity 

We next wish to calculate the profile of electrical potential between 
the n- and p-layers. 

The potential ~ is distributed according to the Poisson equation: 

d2O p 
- (3 )  

dx ~ 

where p is the total charge density and e the dielectric constant of the 
region in consideration. The direction x is normal to the membrane surface, 
the origin being the middle of the s-layer, which accordingly extends from 
- I  to +l (see Fig. 1). According to our model, the charge density in the 
s-layer can be neglected. Thus we have: 

d2@ _(~ 
~ - , ,  for - l < x < + l .  (4) 

The general solution of Eq. (4) is: 

O,(x)=~x + ~ (5) 

where e and /~ are constants to be assigned by the boundary conditions 
as follows. Because of the symmetry of our system we have" 

~ = 0  at x=O, i.e. fl=O. (6) 

In the depletion region of the n-layer, i.e., in the region - l > x  > - ( l +  2), 
where 2 > 0 is the width of the depletion layer, we have according to assump- 
tion (4) of the semianalytic approximation: 

- l > x > - ( l + 2 ) :  d 2 O -  

where F is the Faraday constant. 

The general integral of Eq. (7) is: 

or  

FN+ 
8n 

X 2 

~n 

E. (x) = d ~.  _ FN+ (x + b). 
dx e, 

(7) 

( 8 )  

(9) 
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Outside the depletion region, we have vanishing field strength in the n- 
layer, i.e., 

or with Eq. (9): 
E.=O at x= - ( l+2)  (10) 

b = l + 2 .  (11) 

At x = - l ,  we use continuity of the dielectric displacement: 

~ , E , ( - l ) = e s E s ( - l ) .  (12) 

Since E~(- / )=dOs[dx=a,  we get from Eqs. (9), (11) and (12): 

FN+ 
a =  - - -  ( 1 3 )  

8s 

At x = - l ,  the electrical potential has to be continuous too; i.e., from 
Eqs. (5), (6), (8) and (13), we have: 

c = -~- + 2d 

Thus, the complete course of electrical potential in the s-layer is: 

- l < x <  +/: ~s(x)=-  FN+ 2 x .  (15) 
8s 

In the depletion region of the n-layer we have: 

- ( l + 2 ) < x < l :  0,(x)= FN+ x-  l e, _ = - - -  + ( l + 2 ) x + - - f + 2 1  1-  . (16) 
8n 

An analogous expression can be derived for the depletion region of the 
p-layer. 

The total drop in electrical potential between the steady levels in the 
n- and p-layers is: 

2 2 
~bj=2~O,(- l -  ) = ~  (17) 

Here we have used Eqs. (1), (2) and (16). 

Similar to the case treated by Mauro (1962), the space-charge regions 
next to the s-layer represent a charged capacity. If we change by an applied 
bias the width of the depletion layers by d2, the charge Q of the capacity 
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will be altered by: 

G. Adam: 

d Q = F N d 2 .  (181 

The differential electrical capacity C is then given by: 

c -  dQ 
dtpj " (191 

From Eq. (17) we obtain: 

dl/Ijd2 2 F N e  [2+ 1-~ ] . (20~ 

Thus, from Eqs. (18)-(20), we have finally 

C -  5, (21) 

21 \  ~ l /  

To discuss Eq. (21), we first notice the dependence of 2 on 0j, i.e., on the 
membrane potential. According to Eq. (17), we get: 

2 I, 1"  Oj~ ~ - 1 ]  (22) 
= 5--7 - F N t 2 a ]  *J" 

For an estimate of the order of magnitude of the terms in Eq. (22), we set: 
N = 2  M, es=4 So, e=40 eo, l=2"10 -7 cm. Using the Donnan potential 
0o for N = 2  M from Table 1 and for the resting potential of the squid 
giant axons I V, [ = 60 mV, we have: 

~ j = 2 ~ +  I V,I = 132 mY. 
Since 

2 
~/ j 8s 

FN [~ -=  6.06 �9 10-441 

we obtain in an excellent approximation from Eq. (22): 

1 -- 2FN 1 ~" 

Using again the parameters given above, we get: 

2/1 = 3.03.10- 3. 

(23) 

(24) 

(25) 
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Any other reasonable choice of parameters would give the same picture. 
Thus, in contrast to the abrupt pn-junction, the width of the depletion 
regions is indeed very small compared to that of the p- and n-layers, as 
stated in the discussion of the semianalytic procedure. Using Eqs. (21) and 
(25), we have in a very good approximation: 

C = 8 ~  (26) 
21" 

With the numbers l=2 .10  -v cm and ~s =4 %, we obtain: 

C=0.9.10 -6 Farad cm -2 (27) 

as observed for the squid giant axon (Cole & Moore, 1960) and, indeed, 
for many other biological membranes (Cole, 1965). To check the dependence 
of the differential capacity on the membrane potential, we use Eqs. (21) 
and (24). For 100-mV de- or hyperpolarization, the relative deviation of C 
from the resting value is less than 0.001. This compares well with the 
insensitivity of the electrical capacity of the squid giant axon membrane 
on the membrane potential as shown by Cole (1969, p. 136). The independ- 
ence of the electrical capacity of the psn-jnnction on membrane potential, 
as derived above, is not found for the abrupt pn-junction. Coster et al. (1969) 
have demonstrated a strong dependence of the capacity on membrane 
potential. Using N+ =N_ =2M for the abrupt pn-junction and a resting 
potential of 60 mV, we calculate with their procedure for 100-mV de- 
polarization a capacity 2.03 times the resting capacity, whereas 100-mV 
hyperpolarization gives 0.75 times the resting capacity. 

In passing, we mention that the "punch-through effect", discussed 
by Coster (1965) and Coster etal .  (1969), occurs for the psn-junction 
at much higher membrane potentials than for the abrupt pn-junction. 
Punch-through, as defined by Coster (1965), should occur if a depletion 
region extends all through the fixed-charge lattice. If we use N = 2  M, 
e =40 %, es =4 %, l=20 A, and 2 =30 A, we obtain for the punch-through 
potential t~j from Eq. (17): 

~j=70 v. (28) 

This means punch-through does practically not occur in the psn-model. 
Its calculated range is two to three orders of magnitude larger than the 
electrical breakdown observed for biological membranes (Coster, 1965). 

In conclusion, the main result of this section is contained in Eq. (26), 
which shows the membrane capacity of the psn-junction to be practically 
independent of the fixed-charge density and the membrane potential. 
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Ionic Fluxes Through the Membrane 

For  reference, first we cite data on ionic concentrations of freshly isolated squic 
axons (Lotigo), given by Hodgkin (1964, p. 28): 

Axoplasm: 400 rnM K +, 50 mM Na  +, 108 mM CI- ,  0.4 m_~ Ca ++, 10 mM Mg ++, 
250 mM isethionate. 

Blood: 2 0 m M K  +, 440 mM Na +, 560 mM CI- ,  10ram Ca ++, 54 mM Mg ++. 

The value for the axoplasmic C1- concentration was taken from the extensive investi- 
gation on this point of Keynes (1963). The axonal resting potential of Loligo in vivo is 
approximately--60 mV inside negative (Moore & Cole, 1960). F rom experiments with 
radioactive tracers, it is known that the fluxes of the divalent cations Ca ++ and Mg ++ 
through the membrane are negligible compared to those of the univalent ions (Hodgkin & 
Keynes, 1957; Tasaki, Watanabe & Lerman, 1967; Tasaki & Singer, 1967). Data  on the 
flux of isethionate are not  known to the author;  in the following, we shall neglect its 
eventual permeation through the membrane as well. Data  on the fluxes of K +, Na  + and 
CI -  through giant axons of squid are abundant in the literature. These ions are the 
major contributors to the ionic fluxes the squid axon membrane and only these will be 
considered in this section. 

Data  on Na  + fluxes for the giant axon of Dosidicus have been published by Canessa- 
Fischer, Zambrano and Rojas (1968). The K + and Na + fluxes for Sepia have been 
investigated in detail by Keynes (1951) and Hodgkin and Keynes (1955). Data  on Loligo 
pealeff have been given by Shanes and Berman (1955) and Brinley and Mullins (1965). 
Data  on K +, Na  +, and C1- fluxes for Loligoforbesi were obtained by Caldwell, Hodgkin, 
Keynes and Shaw (1960), Caldwell and Keynes (1960), and Keynes (1963). 

The variation of univalent ion fluxes between the different species are within the 
variations of the results of different authors on the same species. Thus, it can be said 
generally that the influx and the efflux of each ion roughly compensate each other, and 
that furthermore the in- and effluxes of K + and Na + are about 50pmoles/cm z sec, 
whereas the C1- in- and efftux are about half of that. Tasaki (1963) and Tasaki and Singer 
(1967), for somewhat different conditions (internally perfused axons), report  somewhat 
higher numbers for the K + and Na + fluxes. In the following, we shall use the data on 
Loligo forbesi given by Caldwell et aL (1960), Caldwell and Keynes (1960) and Keynes 
(1963), because these are the most complete. For  reference they are assembled in Table 2. 
The N a  + efflux given there is the mean for 42 unpoisoned axons, calculated from 
columns 9 and 11 of Tables 3 and 4 of Caldwell et aL (1960); its passive component 
is the mean for 44 poisoned axons, calculated from columns 6, 7 and 11 of these tables. 

Table 2. Total and passive components of ion fluxes for Loligo forbesi 

+ Na+t Na+.ss Cl~ot Clpass Flux Kt+t •pass 

Influx [pmole/cm 2 sec] 19 a N 5 - - 1 0  ~ 42 8 "~42 a 22.8 b ~ 9 b  

Efflux [pmole/cm z sec] 38 e N38 a,e 70.4 a ,-~ 11 e 20.8 b ~ 2 0  b 

Caldwell et aL (1960). 
b Keynes (1963). 
e Caldwell and Keynes (1960). 
d Computed from columns 9 and 11 of Tables 3 and 4 in reference a. 
e Computed from columns 6, 7 and 11 of Tables 3 and 4 in reference a. 
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The nature of the univalent ion fluxes has been elucidated by the study of the in- 
fluence of metabolic inhibitors. For axons from Sepia and Loligo forbesi, Hodgkin and 
Keynes (1955) and Ca]dwell et aL (1960) have shown that the metabolic inhibitors 
cyanide or 2,4-dinitrophenol (DNP) reduce the efflux of Na + to about 1/10 its normal 
value, whereas the influx of Ha + is essentially unaffected. Lowering the temperature 
to about 1 ~ also inhibits the Na + efflux but hardly affects the Na + influx. One can 
conclude that the Na + efflux is driven largely by a metabolic ion pump, whereas the Na + 
influx is passive. 

Similarly, CaldweU et aL (1960) could show that cyanide poisoning reduces the K + 
influx into Loligo axons to between 25 and 50% its normal value of 19 pmoles/cm 2 see, 
the K + efflux being unaffected by cyanide. Thus, the metabolically independent (i.e., 
passive) component of the K + influx is between 5 and 10 pmoles/cm 2 see. 

The C1- influx also is partly dependent on energy metabolism. Keynes (1963) 
showed that about 50 % of C1- influx into axons of Loligo forbesi is inhibited by 2,4- 
DNP or cyanide, whereas the C1- efflux is unaffected by the inhibitors. We can take 
the metabolically independent components of the ion fluxes as the passive fluxes. The 
passive components of the ion fluxes, as obtained from inhibitor studies, are given 
in Table 2. 

In the following, we wish to describe the net passive ion fluxes in the resting state 
in terms of our model. In the resting state, we assume electroneutrality of total fluxes, 
and furthermore time independence of ionic concentrations in the inside and outside 
reservoirs. Thus, the total influx of an ion should cancel its efflux in the resting state. 
For CI-, the data in Table 2 are in agreement with this assumption. In the cases of Na + 
and K +, the equality of fluxes is only given by order of magnitude. In addition to variations 
of the biological material in general, the following causes may contribute to the deviations 
between in- and effluxes of Na + and K +. The concentrations of high-energy phosphates 
in the axoplasm might have been changed or depleted. The state of maintenance of the 
membrane-bound Na+-K+-ATPase might have been changed with respect to its meta- 
bolic rate and its degree of coupling between Na + and K + transport. The passive perme- 
abilities might have changed in the preparation. The ionic concentration gradients, 
which are maintained carefully in vivo, might have changed in the in vitro preparation 
at the time of measurement. We feel that most of these changes are more severe for the 
metabolic ion pump. For instance, changes in the concentrations of minority cations 
in the external and internal media should affect the metabolic ion pump strongly, but 
affect less strongly the passive permeability. Thus, we consider the passive components 
of the ions fluxes as discerned by the inhibitor studies to be more reliable and to represent 
the passive fluxes of the resting axon. 

Net Passive Ion Flux in the psn-Model 

In  this section, we use an activity coefficient of one;  i.e. we use con- 

centrat ions instead of chemical activities. F o r  each ionic species l, we can 

calculate the membrane  potential  lit for  which there is no  net passive flux, 

the '~ equilibrium potent ia l" ,  f rom the inside ionic concent ra t ion  c~' and the 

outside concent ra t ion  c~: 

RT " 
Vz= --~F-- In ct (29) 

c; 
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where z = + 1 for Na § and K +, and - 1  for C1-. From the measured ionic 
concentrations, reproduced above, we obtain at T= 20 ~ 

VK= --76 mV; VNa = 55 rnV; Vci= -42  inV. (30~ 

Thus, at the resting potential V , = - 6 0  mV, there will be a net passiw 
flux for each of the ion species considered. In order to calculate these fluxe, 
in the semianalytic approximation discussed above, we have to observe 
that only the minority ions contribute appreciably to the total ionic flux 
(Coster, 1965). Since the electric field is essentially zero in the fixed-charge 
layers, we can calculate the flux r of the ion species I as resulting from pure 
diffusion in that layer, where it is minority mobile ion. Thus, according to 
Eq. (14) from Coster (1965) we can write: 

D! 
~t = - ~ t  (clj - ct 0). (311 

Here, Dt is the diffusion coefficient of cation species I in the n-layer, or 
of an anion species l in the p-layer. Similarly, c~ o is the concentration of 
cation species l at the outside face of the n-layer, where  the Donnan po- 
tential has just attained the potential level inside the n-layer, wereas ctj 

is the cation concentration of species l at the boundary between depletion 
region and the bulk of the n-layer. For an anionic species /, c~j and C~o 
are the corresponding quantitites for the p-layer. For a cation l, W~ is the 
width of the n-layer minus the depletion layer, whereas for an anion it is 
the width of the p-layer minus its depletion layer. In contrast to the corre- 
sponding parameters WN+ and WN- used by Coster (1965) for the abrupt 
pn-junction, our W~ parameters are independent of the membrane potential 
and practically equal to the width of the n- or p-layer as shown above. 
Because of the symmetry of our model we can thus write: 

W,=L (32) 

where L is the width of the fixed-charge layers. In this discussion, we have 
neglected the voltage-independent widths of the transition regions between 
fixed-charge layers and inside or outside medium. As was shown above, 
they are small compared to the total widths of the fixed-charge layers 
and do not change for fixed ionic concentrations inside and outside, as 
discussed in this paper. 

We now have to express the concentrations cto and czj by the con- 
centrations in the inside and outside medium and by the membrane potential. 
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When considering the equilibrium distribution of ionic species between 
electrolyte reservoir and fixed-charge layer where it is the minority ion, 
it is convenient to introduce the partition coefficient kt as follows: 

kt = Clo exp ~ FVm 
c I ( zkTJ"  (33) 

By the use of this equation, it is possible to express the concentration ct o 
of cation species I in the n-layer at its equilibrium potential by the partition 
coefficient kz, its concentration ct in the outside medium and the Donnan 
potential VD~, between outside medium and n-layer, where, of course, VD~ 
is the same for all ions distributed between outside medium and n-layer. 
Similarly, the concentration of an anionic species l in the p-layer at its 
equilibrium potential can be expressed, with use of Eq. (33), by its con- 
centration ct in the inside medium, its partition coefficient k~ between 
electrolyte and p-layer and the Donnan potential Vot at the inside face 
of the p-layer. At the equilibrium potential V~, similar partition equilibria 
are valid between all the layers of the composite psn-membrane. 

The situation is different at any membrane potential V which is different 
from the equilibrium potential. Then, according to the semianalytic approxi- 
mation, Eq. (33) remains valid only at the boundary between the inside 
or outside electrolyte reservoir and the corresponding fixed-charge lattice 
(Coster, 1965). Since, in the semianalytic approximation, the applied bias 
voltage occurs only across the depletion layers and the s-layer, and since 
the minority carriers at the boundary between the depletion layer and 
the rest of the fixed-charge layer in this approximation are distributed 
according to the Boltzmann factor, we have: 

 ,oex, } ,34, 

Here V is the membrane potential and (V-Vz)>0 for a depolarizing dis- 
placement from the equilibrium potential. Using Eqs. (31)-(34), we can 
write for the flux ~ :  

q~z=Ptctlexp{F(V-Vt)~-i J (35) 

where the permeability Pz is given by: 

klDt f FV m) 
(36) 
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We can assign numerical  values to the permeabil i t ies P,, if we pu t  V~-- 

- 6 0  mV (resting potent ial)  in Eq.  (35) and  use the experimental ly  deter  

mined net  passive fluxes and  ionic concentrat ions.  

F r o m  Table  2 we have for  the net  passive ion fluxes in pmoles /cm 2 sec 

#K=28 to 33~30;  #Na=31; # O = 1 2 .  (37 

The  K + and C1- fluxes are ou tward ;  the Na  + flux is inward. Using for  c 

the numbers :  

c~= 0.020 M; C~a----~ 0.440 M; c~'~=0.108 M (381 

and  Eq.  (30), we obta in :  

p K = l . 7 0 . 1 0 _  6 cm pNa=7.12" 10_ s cm pci=2.18" 10_ 7 cm (391 
see ' see ' see 

The  permeabil i ty  rat ios 

PK: Pr~: Po = 1:0.042:0.128 (40) 

turn  ou t  to  be very  similar to those derived by the constant  field procedure  

for  K and  N a  (Hodgk in  & Katz ,  1949) and  for  K and  C1 (Keynes,  1963). 

At this place, we can give an estimate on the order of magnitude of the K + perme- 
ability in the s-layer, which is necessary for the semianalytic approximation in the form 
of Eq. (34) to be valid. The Nernst-Planck equation for K + in the s-layer reads: 

(dcK q FCK d~) 
~K~ =-DK~ \ dx RT ~ " (41) 

Here, DK~ is the diffusion coefficient in the s-layer and c K the concentration in the 
s-layer. 

For the Boltzmann relation (34) to be valid, each of the two terms on the right side 
of Eq. (41) must be large compared to the flux '~rs- The flux OKs , of course, must be 
equal to the net passive flux O r =30 pmoles/cm 2 sec. Thus, the following inequality 
should be fulfilled. 

DK~ dc r  >> ~ r  = 30 pmoles/cm 2 sec. (42) 
~ X  

The concentration gradient dcK/dx can be approximated by the concentration difference 
between the p-layer and the boundary between depletion layer and n-layer divided by 
total thickness 2. l of the s-layer if a partition coefficient of one is used between the s- and 
p-layer. The cation concentration between the depletion layer and the n-layer can be 
neglected compared to that in the p-layer. The K+-concentration in the p-layer is given 
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by a relation similar to Eq. (33): 

(43) 

where kp is the partition coefficient for K + between the inside medium and the p-layer, 
c~ is the K + concentration in the inside medium, and VDp > 0 is the Donnan potential 
between the inside medium and the p-layer. For the numerical estimate, we use k/, = 1, 
c~ =0.5 M, N+ =2 M; i.e., Vop =36 mV, and 2. l =40 A. 

Thus, 

and 

,.~ CKp , . ~  
dCKdx ~-2-5----~ "~'"  103 moles, cm -4 (44) 

D / d e K " ~  10 -14 cm2 (45) 
Ks >> q~K/-- f~"~ 6. se---c 

From the value PK = 1.70" 10 -6 cm/sec, obtained above for the n-layer, we can estimate 
from Eq. (36) 

Dx~2 .10 -12  cm2/sec (46) 

where we have used again Vol = 36 mV, k t = 1 and L--30 A. Thus, for Eqs. (45) and (46) 
to be fulfilled, we have to require that D K s > Dk. This is equivalent to stating that the 
major permeability barriers to ion flow of our composite membrane are those regions 
where the ion species considered is the minority mobile ion. 

For the above estimate, only the relative magnitudes of D r and D r s are of interest. 
The absolute magnitudes of these quantities, of course, depend on the choices of the 
partition coefficients and the fixed-charge densities, which are not known a priori. 

Total Electric Current Through the Membrane 

In the steady state of axoplasmic ion concentrations,  as assumed for  the 

resting state, the net passive ion fluxes are balanced by equal but  opposite 

ion fluxes which are driven metabolically. These active fluxes can be 

assumed to be independent  of the membrane  potential.  Fo r  Na  + extrusion 

f rom squid giant axons, this was shown to be true by Hodgkin  and  Keynes 

(1955) and  by Brinley and Mullins (1970). Because of the coupling between 
Na  + extrusion and the metabolically driven K § uptake,  we can presume 

potential  independence for  the latter too. For  the active part  of the C1- 

uptake,  explicit da ta  of this kind are not  available. The contr ibut ion of 

C1- to the total  electric current will turn  out  to be very small, however, 

so tha t  the assumption of potential  independence of all active ionic fluxes 
seems to be reliable for  the results of the following calculations. 

22 J. Membrane Biol. 3 
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The passive electric current/pass(V) is the sum of the individual io~ 
currents given by Eq. (35) multiplied by the Faraday constant: 

Ipass(V)=F~Ptct[ [ RT }-1]" (4: 

Here, the direction of the ionic fluxes ~ was considered so as to take a: 
outward flux of positive charge as a positive current. The active current L 
can be expressed by Eq. (47) taken at the resting potential Vr: 

L c ,  = - 

Thus, the total electric current I (V) can be written: 

FV FV, i(V)=F[exp{__~__~}_exp{~}]~pte t ~FVt[ exp [ -  -~-~-j. (49 

From Eq. (49) we can compute the membrane resistance R as: 

1/R=dI(V) F2 {FV} (FVt) 
dV - R T  exp ~ ~Ptctexpl--R-T-- ~" (5C 

At the resting potential V, = -60  mV, we get with the numbers in Eqs. (30) 
(38) and (39): 

R=3.45 �9 103 f~ cm 2 . (51 

This number, which was computed from data of the chemical ion fluxes 
can be compared with the electrically measured value. It turns out to bq 
in the magnitude observed experimentally. Cole and Moore (1960), fo 
instance, have obtained a resting resistance of 1.4.103 f~ cm 2. By applicatioi 
of the constant-field procedure (see, for instance, Keynes, 1951), onq 
obtains the very similar value of R=3.25.10 a ff~cm 2 for the electrica 
resistance, if again the data compiled in Table 2 are used. 

Even without a voltage dependence of the ionic permeabilities, tN 
electrical current of the psn-model, given in Eq. (49), exhibits rectification 
It is of interest to compare this theoretical steady state current-voltag~ 
characteristic with the experimental one. Since we are interested in th~ 
current-voltage relation near the resting state, we use the data measurec 
directly by a voltage clamp technique and given by Cole and Moore (1960) 
In Fig. 3 we have plotted the experimental curve from Fig. 17 of thes~ 
authors for comparison with the theoretical curve according to Eq. (491 
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Fig. 3. Plot of steady state electric current I vs. membrane potential V for squid giant 
axon near the resting potential of --60 mV. Fully drawn is the experimental curve, 
taken from Fig. 17 of Cole and Moore (1960); broken curve is calculated from tracer 
fluxes according to Eq. (49) of the text; dotted curve is computed from tracer fluxes 

according to the constant-field procedure 

using the chemical data of Eqs. (30), (38) and (39). We have plotted also 
the characteristic following from the constant-field procedure, using the 
same chemical data. As can be seen from this figure, the psn-model gives 
a stronger rectification than the constant-field assumption, but does not 
suffice to reproduce the experimental results without invoking a potential 
dependence of the ionic permeabilities. In an earlier paper (Adam, 1970), 
we have given the description of a cooperatively occurring transition of the 
axon membrane which takes place at and slightly above the resting potential. 
Concurrently with this change of the state of the membrane, the ionic 
permeabilities change and give rise to a strongly voltage-dependent passive 
conductance (Adam, 1970). It is to this additional feature of the axon 
membrane that we wish to ascribe the marked deviations between the 
experimental and the theoretical curve in Fig. 3 at depolarizing potentials. 
A more detailed theoretical description of this additional feature of a 
cooperative change in the steady state of the membrane and its concomitant 
change in passive ionic permeability will be published elsewhere. 

D i s c u s s i o n  

As shown in the sections above, the ionic psn-model proposed for the 
resting axon membrane accounts well for the observed steady state electrical 

22* 
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characteristics. From a theoretical description of the kinetic processe 
during axon excitation (Adam, 1967, 1968, 1970), there are further argument 
in favor of an ionic psn-structure of the axon membrane. Thus, it seem 
very promising to try to prove or disprove by the methods of proteil 
chemistry the presence of the proposed asymmetry in the actual membrane 

The direct isolation and characterization of axonal membrane protein 
seems to be fairly difficult because of the unavoidable contaminatiol 
by membrane proteins from the surrounding Schwann cell layer. Fron 
the work of Camejo, ViUegas, Barnola and Villegas (1969), however, i 
appears possible to distinguish between different membrane fractions, s( 
that one can hope this approach will become fruitful. 

Another possibility for an experimental test seems to be the sequentia 
treatment of the membrane with trypsin and a carboxypeptidase in orde 
to remove positively charged amino acids from the axonal membran~ 
proteins and then to test for cation transport or electrical conductivity 

Also the method of selective reaction of membrane-bound amino group: 
with 1-fluoro-2,4-dinitrobenzene seems to be an interesting test. In 
preliminary account, Strickholm, Clark and Shrager (1970) report on th~ 
action of such reagents on crayfish ventral nerve. As predicted from ou~ 
model, the ratio of K § to C1- permeability increases by this treatment 

Clearly, more experiments of this kind are necessary to prove or disprow 
the psn-model. 

If indeed the nature of ion permeability control turns out to be tha: 
envisioned above, then the hitherto poorly defined structural protein of the 
plasma membrane might prove to be functionally important. Then, the 
charged groups of membrane structural proteins would control the intra. 
cellular ionic content and the membrane potential, i.e., the very basi, 
of life processes in the cell. 

I wish to thank Professors Max Delbrtick (Pasadena, Calif.) and Peter L~tugeJ 
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